
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 20, 1 137-1 15 1 (1 995) 

A COMPACT FOURTH-ORDER FINITE DIFFERENCE 
SCHEME FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES 

EQUATIONS 

MING LI AND TAO TANG 
Department of Mathematics and Statistics, Simon Fmser Universiy, Bumabx B. C., Canada VSA IS6 

AND 

BENGT FORNBERG 
Corporate Research, Exxon Research and Engineering Company, Annandale. NJ 08801, US.A. 

SUMMARY 

We note in this study that the Navier-Stokes equations, when expressed in streamhction-vorticity form, can be 
approximated to fourth-order accuracy with stencils extending only over a 3 x 3 square of points. The key 
advantage of the new compact fourth-order scheme is that it allows direct iteration for low-to-medium Reynolds 
numbers. Numerical solutions are obtained for the model problem of the driven cavity and compared with 
solutions available in the literature. For Re 5 7500 point-SOR iteration is used and the convergence is fast. 
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1. INTRODUCTION 

The present paper is concerned with solving the steady two-dimensional Navier-Stokes (N-S) 
equations by finite differences. It is known that finite difference (FD) methods of obtaining 
approximate numerical solutions of the steady incompressible N-S equations can vary considerably in 
terms of accuracy and efficiency. In the area of FD methods it has been discovered that although 
central difference approximations are locally second-order-accurate, they often suffer from 
computational instability and the resulting solutions exhibit non-physical oscillations. The upwind 
difference approximations are computationally stable, although only first-order-accurate, and the 
resulting solutions exhibit the effects of artificial viscosity. The second-order upwind methods are no 
better than the first-order upwind difference ones for large values of Re. The higher-order FD methods 
of conventional type do not allow direct iterative techniques. An exception has been found in the high- 
order FD schemes of compact type, which are computationally efficient and stable and yield highly 
accurate numerical solutions. 1-3 
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to the equation 

is fourth-order accurate when applied to any solutions to equation (2). Gupta et a1.: Dennis and 
Hudson’ and Gupta3 note that this technique can be generalized to also provide a fourth-order-accurate 
nine-point scheme for solutions to the convection-diffision equation 

With the choices p(x, y )  = $,,, q(x, y) = -$x  and f ( x ,  y) = 0 the pair of equations (2), (3) forms the 
steady 2D N-S equations. However, in this case a problem arises in that the approximations needed to 
obtain the velocities p(x ,  y) and q(x, y) to fourth-order accuracy will extend outside the (3 x 3)-point 
d ~ m a i n . ~ , ~  In the present work we derive a compact fourth-order FD scheme for the time-independent 
N-S equations with the novelty of ‘genuine compactness’, i.e. the compact scheme is strictly within the 
nine-point stencil. It is shown that the new scheme yields highly accurate numerical solutions while 
still allowing SOR-type iterations for low-to-medium Reynolds numbers. 

The organization of the paper is as follows. In the next section we introduce the compact fourth- 
order FD scheme for the N-S equations. In Section 3 we test the new fourth-order scheme for the N-S 
equations which possess an exact solution. The model problem of the lid-driven cavity is described in 
Section 4 with detailed comparisons of our solutions with the existing solutions in the literature. In 
Section 5 we discuss possible extensions of the present method. 

2. NUMERICAL METHODS 

The N-S equations representing the two-dimensional steady flow of an incompressible viscous fluid 
are given in streamhnction-vorticity form as 

Here $ is the streamhnction, 1 is the vorticity and Re is the non-dimensional Reynolds number. 
Assuming a uniform grid in both x- and y-directions, we number the grid points (x, y), (x + h, y), 

2, 3, 4, 5, 6 ,  7 and 8 respectively (see Figure l), where h is the grid size. In writing the FD 
approximations, a single subscript j denotes the corresponding hnction value at the grid point 
numbered j .  

(x, Y + h ) ,  (x  - h, Y) ,  (x,  Y - h), (x + h >  Y + h ) ,  (x  - h, Y + h), (x  - h,  Y - h )  and (x + h ,  Y - h)  as 0, 1, 

By (l), a compact fourth-order scheme for (4) follows immediately: 
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Figure 1. Computational stencil 

we can rewrite ( 5 )  as 5, + c,,,, = Re g(x, y). Now, using (16) in 

8(51 + 52 + 53 + 54) + 2(55 + 56 -k 57 + 58)  - 4050 = 12h2 Reg + h4 Re(& -k gyy) + O(h6)- 

Note that g consists of first partial derivatives of $ and 5. Then g ,  + gw involves the third derivatives 
of $ and 5 and this in turn will lead to the use of extra points outside the (3 x 3)-point domain and ruin 
the compactness. To avoid this, we replace the directional derivatives $-, $w 5, and cw be 
appropriate mixed derivatives which can be approximated up to O(h2) using the nine points. This 
strategy successfiilly gives a resulting scheme of fourth order at the cost of tedious but trivial 
manipulations. We defer the derivation to the Appendix and simply give the result here: 

8(51 -k 52 + 53 + 54)  + 2 ( [ 5  + 56 + 57 -k 5 8 )  - 4050 
= Re($24513 - $13524 + $1585 + $2556 + $3667 + $4578 + $5112 + $6523 + $7534 + h 5 4 1 )  

Re2 + 4 [$13513$204 + $24524$103 -k ;$13+24(556 + 578) 
- i ($13524 + $24513)($56 + $78) - +:35204 - $%03], (7) 

where Aj := f;: - 4 and Akj := f;: - 2fk + 4. The fourth-order compact scheme for the N-S equations 
(4) and ( 5 )  is given by (6) and (7). 

The new fourth-order compact scheme (6) and (7) is to be solved by pointwise iteration methods as 
described in Reference 5 or by Newton's method with direct solvers at each stage as described in 
Reference 6. 

3. NAVIER-STOKES EQUATIONS WITH EXACT SOLUTION 

In this section we obtain numerical solutions of (4) and ( 5 )  using the new fourth-order compact scheme 
(6), (7). The test problem used in this section is chosen such that the analytical solution is available, so 
a rigorous comparison can be made. Following Reference 7, we give the test problem which has exact 
solutions for the N-S equations (4) and ( 5 )  in R: 

Re , 5 = 2ex+y, R = (0, 1) x (0, 1) $=-- y - x  ex+y 

We notice that the above solution is smooth in 
We consider the test problem with Dirichlet boundary conditions, i.e. boundary values of $ and 5 are 

given. Various Reynolds numbers ranging from Re = 5 to 1000 were tested, but since the results appear 
to be Re-independent, only those for Re = 1000 are shown. For the sake of comparison the results 
using a second-order central difference scheme are also presented. The RMS errors in R for the 
streamhction and vorticity are given in Table I. It is observed that the results for the h2 scheme, the 

:= [0, 11 x [0, 11. 



1140 M. LI, T. TANG AND B. FORNBERG 

Table I. RMS errors in R for the streamfunction and vorticity at Re = 1000 

$-error, (-error $-error, (-error $-error, (-error $-error, (-error 

h2 scheme 1.41(-4)*, 2.71(-4) 3.35(-5), 6-63(-5) 8.17(-6), 1-63(-5) 2.02(-6), 4.01(-6) 
h4 scheme 4.72(-8), 9.45(-8) 2.80(-9), 5.59(-9) 1.70(-10), 3.40(-10) 1-05(-ll), 2.10(-11) 
Grid 1 1  x 1 1  21 x 2 1  41 x 4 1  81 x 81 

* 1.41(-4)= 1.41 x etc 

central difference scheme, are in good agreement with those obtained by Bramley and S10an.~ It is also 
seen that the convergence orders for the hZ scheme and the h4 scheme, (6) and (7), are two and four 
respectively. This confirms that the compact scheme (6), (7) is of fourth-order accuracy when the 
solutions of (4) and (5) are smooth. 

This test problem is solved by Newton’s method. The Newton iteration process is similar to that 
described in Reference 6. In all the calculations, less than four iterations are required in order to obtain 
convergent results. 

4. DRIVEN CAVITY PROBLEM 

As a model problem we consider the steady flow of an incompressible viscous fluid in a square cavity 
(0 5 x 5 1, 0 5 y i 1). The flow is induced by the sliding motion of the top wall 0, = 1) from left to 
right; see Figure 2. The boundary conditions are those of no slip: on the stationary walls 
u = a$/+ = 0 and v = -a$/& = 0; on the sliding wall u = 1 and v = 0. This problem has served 
over and over again as a model problem for testing and evaluating numerical techniques, in spite of the 
singularities at two of its corners. Highly accurate benchmark solutions of this problem are available in 
the literature (see e.g. References 9 and 10). 

4.1. Numerical boundary conditions 

The implementation of numerical boundary conditions has received considerable attention in the 
past. Basically there is at least two topics worth discussing in detail: the vorticity condition on the 
boundary and the influence of boundary accuracy (less than the interior) versus global accuracy. For 
the first topic, in spite of the fact that the numerical boundary condition involving the vorticity on the 
boundary has been proved practically successful, it is argued that specifying the vorticity on the 
boundary does not coincide with the reality either physically or mathematically (see e.g. Reference 1 1). 

u = o  
u = o  

secondary 
vortex 1 

u = l  u = o  - 

u = o  
v = o  

econdary 
vortex 2 

u = o  u = o  

Figure 2. Driven cavity 
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From this point of view it is proposed to use two boundary conditions on $ and none on 5 (see e.g. 
References 1 1  and 12). As to accuracy, it is not quite clear whether less accuracy on the boundary 
would essentially depreciate the global accuracy, since a rigorous error analysis is by no means easy for 
the resulting non-linear scheme. Nevertheless, a recent work by Hou and Wetton13 proved that global 
second-order accuracy can be obtained via a second-order-accurate difference scheme in the interior 
and a first-order-accurate method on the boundary. 

In this work our numerical boundary condition is based on the theory in Reference 1 1 .  It uses two 
conditions on $: on the stationary walls $0 = 0 and $ 1  = $212 - $3/9; on the moving wall y = 1 ,  
$o = 0 and = $2/2 - 1,b~/9 + hl3. Here the subscript 0 denotes a value at a boundary grid point and 
the subscriptj ( j = 1, 2, 3) denotes values at thejth internal grid point along the inward normal at 0. 
The boundary conditions for $ are based on the fact that 

is a third-order-accurate approximation of a$/&. The vorticity (1 is determined by the standard five- 
point FD method for (4). The compact scheme (6),  (7) is to be implemented in the region 
[2h, 1 - 2h] x [2h, 1 - 2h]. It can be verified that this treatment of the numerical boundary condition 
has second-order accuracy for e l  in the sense of truncation errors. Moreover, it can be seen that the 
values of lo are not used in the calculations. For detail of this method see Reference 12. 

4.2. Comparisons with existing solutions 

advantages of the compact fourth-order scheme, we shall concentrate on the following two points. 
We now present numerical solutions for the driven cavity problem for Re 5 7500. To illustrate the 

1.  Eficiency. We show that the non-linear systems can be solved by using the point-SOR iteration 
method. 

2. Accuracy. We use mesh sizes which are greater than those used in References 9 and 10 to obtain 
qualitatively and quantitatively agreeable results for reasonably large values of the Reynolds 
number. 

The unit square is covered by a grid of uniform mesh size h (h = l/W. Numerical solutions are 
obtained using an inner-outer iteration procedure as described in Reference 5. At each outer iteration 
the non-linear systems from the discrete streamfunction and vorticity equations are solved iteratively. 
We solve these non-linear systems using point-SOR iteration with the relaxation parameters a L 1 for 
the streamfunction and j 2 1 for the vorticity. These parameters are usually taken as a = 1.5 and 
fi  = 1.2 for the coarse mesh (41 x 41 grid). For the fine mesh (129 x 129 grid) we use 
(a, p) = (1-2, 1 . 1 )  for Re 5 3200 and (a, p )  = (1.1, 1.0) for Re>3200. 
iterations in all the calculations. The smoothing (or damping) parameter 
numerical boundary values. 

Let 

We also use two inner 
6 is used to obtain the 

denote the iteration error at the mth itertaion, where { c:)} and { $!)} refer to the values of { cv} and 
{ $ v }  after the mth iteration. To show the rate of convergence, we plot the convergence history for 
Re = 100,400, 1000 and 2000 using a 41 x 41 grid in Figure 3. The iterations were started with zero 
initial data and were terminated when E(m)< The relaxation parameters used are 
(a, B, 6)=(1-5, 1-2, 0.9) for Re 5 1000 and (a, p, 6) = (1.2, 1 . 1 ,  0.5) for Re = 2000. Moreover, in 
Table I1 we give the number of outer iterations needed to converge to the required tolerance. Table I1 
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Figure 3. Convergence history for Re= 100, 400, 1000 and 2000 

also includes the corresponding numbers provided in Reference 3. It is seen that the present procedure 
is faster than that used in Reference 3. 

For the fine grid (129 x 129) the solution procedure is as follows. First we set Re = 200 and use zero 
initial values. When E(rn)< y = 0.05, we increase the value of the Reynolds number by letting 
Re = Re + AR with AR = 200. If the iteration error E(m) for this Re is less than y,  we increase the value 
of Re by adding another AR. Repeat this procedure until Re = 1000. Then more iterations are used 
until E(m) < 5 x see Figure 4(a). Thus we obtain the convergent solutions for Re = 1000. Next 
we set Re = 1200 and use the solutions for Re = 1000 as starting values. If E(m) < y = 0.05, then the 
value of Re is updated by adding a AR which again equals 200. Repeat this procedure until Re = 3200. 
Then more iterations are used until E(m) < 5 x lop4; see Figure 4(a). Similarly we use the convergent 
solutions for Re = 3200 and 5000 as initial values for Re = 5000 and 7500 respectively, but in these 
two cases we use AR = 50 and y = 0.01; see Figure 4(b). The relaxation parameters are 
(a, p, 6) = (1 *2, 1 - 1 ,  0.9) for Re 5 3200 and (a, p, 6) = (1 * 1, 1 -0, 0.5) for Re > 3200. It can be seen 
from Figure 4 that about 4000 iterations are sufficient to obtain convergent solutions for all the 
Reynolds numbers considered. 

Table 11. Number of outer iterations needed to converge to The 
present calculation uses two inner iterations. Ten inner iterations are used 

by Gupta3 

Re Present Gupta 

100 
400 

1000 
2000 

352 
433 
668 

1779 

~ 

353 
509 

1040 
4266 
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Figure 4(a). Convergence history for Re = 1000 and 3200 

UNIFORM GRID: 129x129 (b) 
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Figure 4@). Convergence history for Re = 5000 and 7500 
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Figures 5 and 6 show the streamfimction and vorticity contours for Re = 1 ,  100,400 and 1000 using 
a 41 x 41 grid. They can be compared with the results of G ~ p t a , ~  Ghia et ~ 1 . ~  and Schreiber and 
Keller" and are graphically indistinguishable. Figures 7 and 8 show the streamfimction and vorticity 
contours for Re = 1000,3200,5000 and 7500 using a 129 x 129 grid. Again they compare well with 
the well-known results obtained by Ghia et ~ 1 . ~  In Table I11 we summarize the data concerning the 
locations and strengths of the primary vortex for Re = 1000,3200,5000 and 7500, which are found to 
be in very good agreement with the higher-order results in Reference 14 and the finer mesh results in 
Reference 9. 

5. EXTENSIONS 

5.1. Extension to rectangular grids 

The schemes introduced in Section 2 can be readily extended to rectangular grids, i.e. the mesh sizes 
Ax in the x-direction and Ay in the y-direction are different. The derivation is in the same spirit as the 
Appendix. We use Taylor expansion in the x- and y-directions separately when discretizing the 
differential equations. In invoking equations (4) and (5) to eliminate third-order directional derivatives 
(as in the Appendix, equations (1 7) and ( 1  9)), we use 

Finally we can obtain the fourth-order compact scheme with anisotropic mesh size for (4) and (5): 

Table 111. Comparison of the results on features of the primary vortex for high Reynolds numbers 

Re Source $-value [- value Location 

1000 Present (129 x 129) 
Nishida and S a t ~ f u k a ' ~  
(129 x 1296 
Ghia et al. (129 x 129) 
Present (1 29 x 129) 
Nishida and S a t ~ f u k a ' ~  
(129 x 1296 
Ghia et al. (129 x 129) 

5000 Present (1 29 x 129) 
Ghia et aL9 (257 x 257) 

7500 Present (129 x 129) 
Ghia et ~ 1 . ~  (257 x 257) 

3200 

0.1 18448 
0.1 19004 

0.1 17929 
0.120529 
0.121 154 

0.120377 
0.120359 
0- 1 18966 
0.1 19379 
0- 1 19976 

2-05876 
2.06855 

2-04968 
1 -94286 
1.95078 

1 *98860 
1-92430 
1 -8601 6 
1.91950 
1 -87987 

0.5313, 0.5625 
0.5313, 0.5625 

0.53 13, 0-5625 
0.5156, 0.5391 
0.5156, 0.5391 

0.5165, 0.5469 
0.5156, 0.5391 
0.51 17, 0.5352 
0.5156, 0.5391 
0-51 17, 0.5322 
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Figure 5. Streamlines for Re= 1 ,  100, 400 and 1000 using a 41 x 41 uniform grid 
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Figure 7. Streamlines for R e =  1000, 3200, 5000 and 7500 using a 129 x 129 uniform grid 
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where 1 = AyIAx, y = AxIAy and again J, :=A - A, A k j  :=A - 2fk +J. It is easy to verify that 
when Ax = Ay, the above scheme is in coincidence with the one given in Section 2. In order for the 
above scheme to allow SOR-type iteration, the mesh ratio y is required to satisfy y E ( l I J 5 ,  45). 

5.2. Extension to more general domains 

If a domain can be transformed into a rectangular one by conformal mappings, then the present 
compact fourth-order methods can be extended to solve the transformed equations in the rectangular 
domain. By using a conformal mapping x = x(o, q) and y = y(o, q), the resulting N-S equations can 
be written as 

$0, + $qq = -P(o7 v)57 ( 1 1 )  

where P(o, q) is a known function. A fourth-order compact scheme for (11) and (12) can be 
constructed in similar way to the Appendix. The only extra steps are to add the term 5(pUCq - PqCU) to 
the right-hand sides of (17) and (19). Since p, and P, are known functions, the extra term can be 
readily approximated up to O(h2) within the nine-point stencil. 

6. REMARKS AND CONCLUSIONS 

6. I .  Newton 5. method 

Over recent years there has been great interest in using Newton’s method with direct solvers at each 
stage to solve the discretized N-S equations. This technique is useful in obtaining accurate steady 
solutions not only in high-Reynolds-number cases but also in time-unstable situations such as steady 
incompressible flow past ‘simple’ blunt bodies (e.g. a cylinder, a sphere, a flat plate perpendicular to a 
freestream, arrays of such bodies, etc). In spite of the fact that experiments become time-dependent at 
relatively low Reynolds numbers (owing to instabilities), there are many reasons for studying steady 
(unstable) flow fields at high Reynolds To obtain the steady (unstable) flow fields at 
high Reynolds numbers, it is impossible to employ any standard pointwise iterative methods, which 
tend to pick up instabilities reminiscent of temporal ones. The quadratic convergence of Newton’s 
method precludes this from happening. The cost of solving banded systems with partially pivoted 
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Gaussian elimination is proportional to the number of iterations and to the square of the bandwidth. If 
we consider Newton's method implemented on an N x N grid, then with the usual row or column 
ordering the bandwidth for the previous compact fourth-order is 6N. Therefore the cost of 
solving banded systems is O(72p). On the other hand, the bandwidth for the present compact scheme 
is 4N and hence the cost of solving banded systems is O(32p).  

6.2. Non-compact fourth-order schemes 

employed fourth-order streamfunction methods for the time-dependent, 
incompressible N-S equations. Wide schemes which are built using standard fourth-order difference 
operators are employed instead of compact ones and the boundary terms are handled by extrapolating 
the streamfunction values. Evidence is given that this approach is preferable to using compact 
differencing for high-Reynolds-number flows. This property of compact schemes has been well 
documented in Reference 18. Indeed, we found that for the driven cavity problem the convergence 
becomes slow and SOR pointwise iteration does not work when Re 2 9000. One of the reasons for this 
is that the truncation errors for all the compact schemes are of order O(h4Re2), while the truncation 
errors for conventional fourth-order schemes are of order O(h4Re). 

Hou and Wetton' 

6.3. Conclusions 

In this work we have developed a new compact fourth-order scheme for the time-independent 
Navier-Stokes equations with the novelty of 'genuine compactness'. In deriving compact fourth-order 
schemes, the main difference between our method and previous ones is the following. To obtain 
a compact fourth-order scheme for (9, previous researchers employ Taylor expansion for (5) but do 
not use (4) which gives the relation between II/ and i. However, our procedure also employs equation 
(4), so that the compact scheme for (5) is strictly within the nine-point stencil (see equations (17) and 
(19) in the Appendix). The key point with the present scheme is that it allows direct iteration for low- 
to-medium Re. 
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APPENDIX: FOURTH-ORDER SCHEME FOR VORTICITY EQUATION 

For completeness we first reiterate the derivation of the fourth-order compact scheme for 

u n + u ,  = f ( x ,  Y ) .  (13) 
Following the notation in Reference 19 and using Taylor expansion, we have (at point 0) 

8 u  h2 8'u 
8x2 12 8x4 6 , ~ = - + -  - + 0 ( h 4 )  = 

where 6: := (ul - 2u0 + ug)/h (see Figure 1) and we have used the fact 

- = 6;u + O(h2)  
8 U  

8x2 
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Therefore, symbolically, 

Using the above formula and its counterpart in the y-direction, we can approximate (1 3) by 

( 1 + - q  :1 ) - l  6$+ ( 1+-b2 :1. .)-I a;# = f + O ( h 4 ) ,  

which gives 

This result implies that g, + g,,,, is a combination of first and second derivatives of $ and 1, which can 
be approximated to a truncation error of order O(h2) by the 3 x 3 grid points. That is, Z2 in (16) can be 
approximated by t+hj, ti, 0 5 j 5 8, giving a truncation error of order O(h6). We now consider the term 
ZI. First notice that 
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This result implies that approximations for h2g (or, equivalently, for Zl) may involve the use of $-, 
$m, l,, rm. However, in order to approximate these third derivatives to O(h2), extra points outside 
the (3 x 3)-point domain are required. To avoid this, we observe that 

It is clear that each term in T I ,  T2 and T3 can be approximated up to O(h2) within the nine-point stencil. 
We quote some samples of the difference formulae to be used: 

Substituting the above results into (20) and using (16), we obtain the fourth-order compact scheme (7). 
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